3.87 \(\int \frac{d+e x^n}{\sqrt{a+b x^n+c x^{2 n}}} \, dx\)

Optimal. Leaf size=292 \[ \frac{d x \sqrt{\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^n}{\sqrt{b^2-4 a c}+b}+1} F_1\left (\frac{1}{n};\frac{1}{2},\frac{1}{2};1+\frac{1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{\sqrt{a+b x^n+c x^{2 n}}}+\frac{e x^{n+1} \sqrt{\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^n}{\sqrt{b^2-4 a c}+b}+1} F_1\left (1+\frac{1}{n};\frac{1}{2},\frac{1}{2};2+\frac{1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{(n+1) \sqrt{a+b x^n+c x^{2 n}}} \]

[Out]

(e*x^(1 + n)*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[
1 + n^(-1), 1/2, 1/2, 2 + n^(-1), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/((1
 + n)*Sqrt[a + b*x^n + c*x^(2*n)]) + (d*x*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b +
Sqrt[b^2 - 4*a*c])]*AppellF1[n^(-1), 1/2, 1/2, 1 + n^(-1), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^n)/(b +
 Sqrt[b^2 - 4*a*c])])/Sqrt[a + b*x^n + c*x^(2*n)]

________________________________________________________________________________________

Rubi [A]  time = 0.338118, antiderivative size = 292, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.192, Rules used = {1432, 1348, 429, 1385, 510} \[ \frac{d x \sqrt{\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^n}{\sqrt{b^2-4 a c}+b}+1} F_1\left (\frac{1}{n};\frac{1}{2},\frac{1}{2};1+\frac{1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{\sqrt{a+b x^n+c x^{2 n}}}+\frac{e x^{n+1} \sqrt{\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^n}{\sqrt{b^2-4 a c}+b}+1} F_1\left (1+\frac{1}{n};\frac{1}{2},\frac{1}{2};2+\frac{1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{(n+1) \sqrt{a+b x^n+c x^{2 n}}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^n)/Sqrt[a + b*x^n + c*x^(2*n)],x]

[Out]

(e*x^(1 + n)*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[
1 + n^(-1), 1/2, 1/2, 2 + n^(-1), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/((1
 + n)*Sqrt[a + b*x^n + c*x^(2*n)]) + (d*x*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b +
Sqrt[b^2 - 4*a*c])]*AppellF1[n^(-1), 1/2, 1/2, 1 + n^(-1), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^n)/(b +
 Sqrt[b^2 - 4*a*c])])/Sqrt[a + b*x^n + c*x^(2*n)]

Rule 1432

Int[((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Int[ExpandIntegran
d[(d + e*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4
*a*c, 0]

Rule 1348

Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n + c*x^(2*n))
^FracPart[p])/((1 + (2*c*x^n)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^n)/(b - Rt[b^2 - 4*a*c, 2]))^F
racPart[p]), Int[(1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]))^p, x], x] /
; FreeQ[{a, b, c, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p]

Rule 429

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, -((b*x^n)/a), -((d*x^n)/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1385

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a +
 b*x^n + c*x^(2*n))^FracPart[p])/((1 + (2*c*x^n)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^n)/(b - Rt[
b^2 - 4*a*c, 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^n)/(b - Sqrt
[b^2 - 4*a*c]))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{d+e x^n}{\sqrt{a+b x^n+c x^{2 n}}} \, dx &=\int \left (\frac{d}{\sqrt{a+b x^n+c x^{2 n}}}+\frac{e x^n}{\sqrt{a+b x^n+c x^{2 n}}}\right ) \, dx\\ &=d \int \frac{1}{\sqrt{a+b x^n+c x^{2 n}}} \, dx+e \int \frac{x^n}{\sqrt{a+b x^n+c x^{2 n}}} \, dx\\ &=\frac{\left (d \sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}}\right ) \int \frac{1}{\sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}}} \, dx}{\sqrt{a+b x^n+c x^{2 n}}}+\frac{\left (e \sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}}\right ) \int \frac{x^n}{\sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}}} \, dx}{\sqrt{a+b x^n+c x^{2 n}}}\\ &=\frac{e x^{1+n} \sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}} F_1\left (1+\frac{1}{n};\frac{1}{2},\frac{1}{2};2+\frac{1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{(1+n) \sqrt{a+b x^n+c x^{2 n}}}+\frac{d x \sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}} F_1\left (\frac{1}{n};\frac{1}{2},\frac{1}{2};1+\frac{1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{\sqrt{a+b x^n+c x^{2 n}}}\\ \end{align*}

Mathematica [A]  time = 0.348705, size = 245, normalized size = 0.84 \[ \frac{x \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^n}{\sqrt{b^2-4 a c}+b}} \left (d (n+1) F_1\left (\frac{1}{n};\frac{1}{2},\frac{1}{2};1+\frac{1}{n};-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}},\frac{2 c x^n}{\sqrt{b^2-4 a c}-b}\right )+e x^n F_1\left (1+\frac{1}{n};\frac{1}{2},\frac{1}{2};2+\frac{1}{n};-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}},\frac{2 c x^n}{\sqrt{b^2-4 a c}-b}\right )\right )}{(n+1) \sqrt{a+x^n \left (b+c x^n\right )}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(d + e*x^n)/Sqrt[a + b*x^n + c*x^(2*n)],x]

[Out]

(x*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b +
 Sqrt[b^2 - 4*a*c])]*(e*x^n*AppellF1[1 + n^(-1), 1/2, 1/2, 2 + n^(-1), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*
c*x^n)/(-b + Sqrt[b^2 - 4*a*c])] + d*(1 + n)*AppellF1[n^(-1), 1/2, 1/2, 1 + n^(-1), (-2*c*x^n)/(b + Sqrt[b^2 -
 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])]))/((1 + n)*Sqrt[a + x^n*(b + c*x^n)])

________________________________________________________________________________________

Maple [F]  time = 0.018, size = 0, normalized size = 0. \begin{align*} \int{(d+e{x}^{n}){\frac{1}{\sqrt{a+b{x}^{n}+c{x}^{2\,n}}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d+e*x^n)/(a+b*x^n+c*x^(2*n))^(1/2),x)

[Out]

int((d+e*x^n)/(a+b*x^n+c*x^(2*n))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x^{n} + d}{\sqrt{c x^{2 \, n} + b x^{n} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x^n)/(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x^n + d)/sqrt(c*x^(2*n) + b*x^n + a), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x^n)/(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d + e x^{n}}{\sqrt{a + b x^{n} + c x^{2 n}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x**n)/(a+b*x**n+c*x**(2*n))**(1/2),x)

[Out]

Integral((d + e*x**n)/sqrt(a + b*x**n + c*x**(2*n)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x^{n} + d}{\sqrt{c x^{2 \, n} + b x^{n} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x^n)/(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="giac")

[Out]

integrate((e*x^n + d)/sqrt(c*x^(2*n) + b*x^n + a), x)